Latchup-Free ESD Protection Design With Complementary Substrate-Triggered SCR Devices

نویسنده

  • Ming-Dou Ker
چکیده

The turn-on mechanism of silicon-controlled rectifier (SCR) devices is essentially a current triggering event. While a current is applied to the base or substrate of an SCR device, it can be quickly triggered on into its latching state. In this paper, latchup-free electrostatic discharge (ESD) protection circuits, which are combined with the substrate-triggered technique and an SCR device, are proposed. A complementary circuit style with the substrate-triggered SCR device is designed to discharge both the pad-toSS and pad-toDD ESD stresses. The novel complementary substrate-triggered SCR devices have the advantages of controllable switching voltage, adjustable holding voltage, faster turn-on speed, and compatible to general CMOS process without extra process modification such as the silicide-blocking mask and ESD implantation. The total holding voltage of the substrate-triggered SCR device can be linearly increased by adding the stacked diode string to avoid the transient-induced latchup issue in the ESD protection circuits. The on-chip ESD protection circuits designed with the proposed complementary substrate-triggered SCR devices and stacked diode string for the input/output pad and power pad have been successfully verified in a 0.25m salicided CMOS process with the human body model (machine model) ESD level of 7.25 kV (500 V) in a small layout area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of Initial-On ESD Protection Concept With PMOS-Triggered SCR Devices in Deep-Submicron CMOS Technology

In order to enhance the applications of SCR devices for deep-submicron CMOS technology, a novel SCR design with “initial-on” function is proposed to achieve the lowest trigger voltage and the highest turn-on efficiency of SCR device for effective on-chip ESD protection. Without using the special native device (NMOS with almost zero or even negative threshold voltage) or any process modification...

متن کامل

Substrate-Triggered SCR Device for On-Chip ESD Protection in Fully Silicided Sub-0.25- m CMOS Process

The turn-on mechanism of a silicon-controlled rectifier (SCR) device is essentially a current triggering event. While a current is applied to the base or substrate of the SCR device, it can be quickly triggered into its latching state. In this paper, a novel design concept to turn on the SCR device by applying the substrate-triggered technique is first proposed for effective on-chip electrostat...

متن کامل

Design optimization of ESD protection and latchup prevention for a serial I/O IC

ESD/latchup are often two contradicting variables during IC reliability development. Trade-off between the two must be properly adjusted to realize ESD/latchup robustness of IC products. A case study on SERIAL Input/Output (I/ O) IC’s is reported here to reveal this ESD/latchup optimization issue. SERIAL I/O IC features a special clamping property to wake up PC’s during system standby situation...

متن کامل

Dummy-Gate Structure to Improve Turn-on Speed of Silicon-Controlled Rectifier (SCR) Device for Effective Electrostatic Discharge (ESD) Protection

Turn-on speed is the main concern for on-chip electrostatic discharge (ESD) protection device, especially in deep submicron complementary metal-oxide semiconductors (CMOS) processes with ultra-thin gate oxide. A novel dummy-gate-blocking silicon-controlled rectifier (SCR) device with substrate-triggered technique is proposed to improve the turn-on speed of SCR device for using in on-chip ESD pr...

متن کامل

SCR Device With Double-Triggered Technique for On-Chip ESD Protection in Sub-Quarter-Micron Silicided CMOS Processes

Turn-on efficiency is the main concern for silicon-controlled rectifier (SCR) devices used as on-chip electrostatic discharge (ESD) protection circuit, especially in deep sub-quarter-micron CMOS processes with much thinner gate oxide. A novel double-triggered technique is proposed to speed up the turn-on speed of SCR devices for using in on-chip ESD protection circuit to effectively protect the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001